A Novel Viral SOCS from Infectious Spleen and Kidney Necrosis Virus: Interacts with Jak1 and Inhibits IFN-α Induced Stat1/3 Activation

نویسندگان

  • Chang-Jun Guo
  • Li-Shi Yang
  • Ying-Fen Zhang
  • Yan-Yan Wu
  • Shao-Ping Weng
  • Xiao-Qiang Yu
  • Jian-Guo He
چکیده

Interferon (IFN)-induced Janus kinase (Jak)/signal transducer and activator of transcription (Stat) pathway is important in controlling immune responses and is negatively response-regulated by the suppressor of cytokine signaling (SOCS) proteins. However, several viruses have developed various strategies to inhibit this pathway to circumvent the anti-viral immunity of the host. The infectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus in the family Iridoviridae and a causative agent of epizootics in fish. ISKNV ORF103R encodes a predicted viral SOCS (vSOCS) with high homology to the vertebrate SOCS1, but lacks a SOCS-box domain. Interestingly, vSOCS only exists in the genus Megalocytivirus. ISKNV-vSOCS can block the IFN-α-induced Jak/Stat pathway in HepG2 cells. Over-expression of ISKNV-vSOCS inhibited the activities of IFN-stimulated response element (ISRE) promoter; however, the inhibitions by ISKNV-vSOCS were dose-dependent. ISKNV-vSOCS interacted with Jak1 protein and inhibited its tyrosine kinase activity in vitro. ISKNV-vSOCS also impaired the phosphorylation of Stat1 and Stat3 proteins and suppressed their activations. The point mutations (F18D, S66A, S85A, and R64K) of ISKNV-vSOCS significantly impaired the inhibition of IFN-α-induced ISRE-promoter activation. In conclusion, vSOCS inhibits IFN-α-induced Stat1/Stat3 signaling, suggesting that Megalocytivirus has developed a novel strategy to evade IFN anti-viral immunity via vSOCS protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influenza A Virus Inhibits Type I IFN Signaling via NF-κB-Dependent Induction of SOCS-3 Expression

The type I interferon (IFN) system is a first line of defense against viral infections. Viruses have developed various mechanisms to counteract this response. So far, the interferon antagonistic activity of influenza A viruses was mainly observed on the level of IFNbeta gene induction via action of the viral non-structural protein 1 (NS1). Here we present data indicating that influenza A viruse...

متن کامل

The Viral TRAF Protein (ORF111L) from Infectious Spleen and Kidney Necrosis Virus Interacts with TRADD and Induces Caspase 8-mediated Apoptosis

Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus of the Iridoviridae family. It causes a serious and potentially pandemic disease in wild and cultured fishes. ISKNV infection induces evident apoptosis in mandarin fish (Siniperca chuatsi) and zebrafish (Danio renio). However, the mechanism is still unknown. After a genome-wide bioinformatics an...

متن کامل

Prostacyclin inhibits IFN-gamma-stimulated cytokine expression by reduced recruitment of CBP/p300 to STAT1 in a SOCS-1-independent manner.

Increasing evidence indicates that pulmonary arterial hypertension is a vascular inflammatory disease. Prostacyclin (PGI(2)) is widely used to treat pulmonary arterial hypertension and is believed to benefit patients largely through vasodilatory effects. PGI(2) is also increasingly believed to have anti-inflammatory effects, including decreasing leukocyte cytokine production, yet few mechanisti...

متن کامل

Human Metapneumovirus Inhibits IFN-β Signaling by Downregulating Jak1 and Tyk2 Cellular Levels

Human metapneumovirus (hMPV), a leading cause of respiratory tract infections in infants, inhibits type I interferon (IFN) signaling by an unidentified mechanism. In this study, we showed that infection of airway epithelial cells with hMPV decreased cellular level of Janus tyrosine kinase (Jak1) and tyrosine kinase 2 (Tyk2), due to enhanced proteosomal degradation and reduced gene transcription...

متن کامل

Interferon-γ inhibits interferon-α signalling in hepatic cells: evidence for the involvement of STAT1 induction and hyperexpression of STAT1 in chronic hepatitis C

IFN-γ (interferon-γ ) modulates IFN-α therapy in chronic hepatitis C infection; however, the underlying mechanism remains unclear. Here we demonstrate that long-term (3–6 days) but not short-term (up to 1 day) IFN-γ treatment of human hepatoma Hep3B cells attenuates IFN-α activation of STAT1 (signal transducers and activators of transcription factor 1), STAT2 and STAT3, but enhances IFN-γ and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012